Midsemestral exam 2010 M.Math.IInd year Advanced Number Theory — B.Sury Open Book: Borevich-Shafarevich

Q 1. Let $f(x_1, \dots, x_n) = \sum_{i=1}^n a_i x_i^2$ where $a_i \in \mathbf{F}_p^*$ with $p \neq 2$. Determine the number of solutions $(x_1, \dots, x_n) \in \mathbf{F}_p^n$ of f = 0.

Q 2. Let *p* be an odd prime and $(a_i, b_i) \in \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}; 1 \le i \le 3p - 2$. Use the Chevalley-Warning theorem to obtain a set *T* of cardinality *p* or 2*p* for which $\sum_{i \in T} (a_i, b_i) = (0, 0) \in \mathbf{Z}/p\mathbf{Z} \times \mathbf{Z}/p\mathbf{Z}$.

Q 3.

(i) If p > 3, prove that $\sum_{(\frac{a}{p})=1} a \equiv 0 \mod p$.

(ii) Use the quadratic reciprocity law to decide whether $x^2 + 5x \equiv 12 \mod 31$ has solutions.

Q 4. Consider the Hilbert symbol (a, b) on \mathbf{Q}_p where p is an odd prime. Write $(a, b) = (-1)^{[a,b]}$ where $[a, b] \in \mathbf{Z}/2\mathbf{Z}$. Determine the matrix $\begin{pmatrix} [p,p] & [p,u] \\ [u,u] & [u,u] \end{pmatrix}$ where u is a p-adic unit whose image in \mathbf{F}_p is a quadratic non-residue.

Q 5. Prove that the polynomial $(X^2 - 2)(X^2 - 17)(X^2 - 34)$ has a root in each \mathbf{Q}_p .

Hint: You may use Hensel's lemma.

OR

Use Hensel's lemma to prove that $\alpha \in \mathbf{Q}_p$ is a *p*-adic unit if and only if α has an *n*-th root for each *n* relatively prime to p(p-1).

Q 6. Let $f = a_0 + a_1 X + \cdots + a_n X^n \in \mathbf{Q}_p[X]$ be irreducible of degree $n \geq 1$, where $f(0) \neq 0$. Use Hensel's lemma to prove that if $a_0, a_n \in \mathbf{Z}_p$, then $f \in \mathbf{Z}_p[X]$.

OR

Let $f = \sum_{i=1}^{4} a_i x_i^2$ with $a_i \in \mathbf{Q}_p^*$. If f does not represent 0, prove that $\prod_{i=1}^{4} a_i$ is a square and that Hasse invariant c(f) = -1.

Q 7. Let *a* be an integer and *p* be a prime not dividing *a*. Prove that the sequence $\{a^{p^n}\}$ converges in \mathbf{Q}_p to a (p-1)-th root of unity.

OR

If $\sum_{n=1}^{\infty} a_n$ is a convergent series in \mathbf{Q}_p , then any rearrangement also converges to the same sum.

Q 8. Prove that \mathbf{Q}_p and \mathbf{Q}_q are non-isomorphic fields when $p \neq q$.